INTEGRATION BASICS

LEAVING CERT HIGHER LEVEL

PREMIUM VERSION PREVIEW

WWW.MATHSPOINTS.IE/SIGN-UP/

2016 LCHL Paper 1 – Question 7 (b) (i)

The inflated ball is kicked into the air from a point *O* on the ground. Taking *O* as the origin, (x, f(x)) approximately describes the path followed by the ball in the air, where

$$f(x) = -x^2 + 10x$$

and both x and f(x) are measured in metres.

Find the values of *x* when the ball is on the ground.

Ball will be on the ground at f(x) = 0

 $f(x) = -x^{2} + 10x$ -x² + 10x = 0 x(-x + 10) = 0 x = 0 -x + 10 = 0 x = 10

M^ATHSPOINTS.IE

2016 LCHL Paper 1 – Question 7 (b) (ii)

Find the average height of the ball above the ground, during the interval from when it is kicked until it hits the ground again.

The average height is the average value of the height function from h = 0 to h = 10

$$= \frac{1}{10 - 0} \int_0^{10} (-x^2 + 10x) dx$$

$$= \frac{1}{10} \left[-\frac{x^3}{3} + \frac{10x^2}{2} \right]_0^{10}$$

$$= \frac{1}{10} \left[-\frac{x^3}{3} + 5x^2 \right]_0^{10}$$

$$= \frac{1}{10} \left[-\frac{(10)^3}{3} + 5(10)^2 - \left(-\frac{(0)^3}{3} + 5(0)^2 \right) \right]$$

$$= \frac{1}{10} \left(-\frac{1000}{3} + 500 \right)$$

$$= \frac{50}{3} m$$

M^ATHSPOINTS.IE

2014 LCHL Sample Paper 1 – Question 6 (b) (i)

Let $h(x) = x \ln x$, for $x \in \mathbb{R}$, x > 0. Find h'(x).

Product Rule
$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$h'(x) = x\left(\frac{1}{x}\right) + \ln x (1)$$
$$h'(x) = 1 + \ln x$$

$$y = \ln u$$
$$\frac{dy}{dx} = \frac{1}{u} \left(\frac{du}{dx}\right)$$

2014 LCHL Sample Paper 1 – Question 6 (b) (i)

Hence, find

 $\ln x \, dx.$

$$h'(x) = 1 + \ln x$$
$$h(x) = \int (1 + \ln x) dx$$
$$x \ln x = \int (1 + \ln x) dx$$
$$x \ln x = \int 1 dx + \int \ln x dx$$
$$x \ln x - \int 1 dx = \int \ln x dx$$
$$x \ln x - x + c = \int \ln x dx$$

Integrate both sides.

MÅTHSPOINTS.IE

OLD COURSE

LEAVING CERT HIGHER LEVEL

2012 LCHL Paper 1 – Question 8 (a)

Find

$$\int (1 + \cos 2x + e^{3x}) \, dx$$

$$\int (1 + \cos 2x + e^{3x}) \, dx$$
$$= x + \frac{\sin 2x}{2} + \frac{e^{3x}}{3} + c$$

$$\int \cos u \, dx \qquad \qquad \int e^u \, dx$$
$$= \frac{1}{\frac{du}{dx}} \sin u + c \qquad \qquad = \frac{1}{\frac{du}{dx}} e^u + c$$

MÅTHSPOINTS.IE

Find Evaluate $\int_{0}^{\frac{\pi}{8}} \sin^{2} 2x \, dx$

$$\int_{0}^{\frac{\pi}{8}} \sin^{2} 2x \, dx$$

$$= \int_{0}^{\frac{\pi}{8}} \left(\frac{1}{2}(1 - \cos 4x)\right) dx$$

$$= \frac{1}{2} \int_{0}^{\frac{\pi}{8}} (1 - \cos 4x) \, dx$$

$$= \frac{1}{2} \left[x - \frac{1}{4} \sin 4x\right]_{0}^{\frac{\pi}{8}}$$

$$= \frac{1}{2} \left[\frac{\pi}{8} - \frac{1}{4} \sin 4\left(\frac{\pi}{8}\right) - \left(0 - \frac{1}{4} \sin 4(0)\right)\right]$$

$$= \frac{1}{2} \left[\frac{\pi}{8} - \frac{1}{4}(1)\right]$$

$$= \frac{\pi}{16} - \frac{1}{8}$$

$$\sin^2 A = \frac{1}{2}(1 - \cos 2A)$$

M^{*}, THSPOINTS.IE

PREMIUM VERSION PREVIEW

WWW.MATHSPOINTS.IE/SIGN-UP/