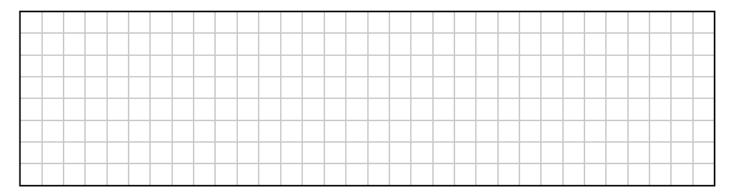
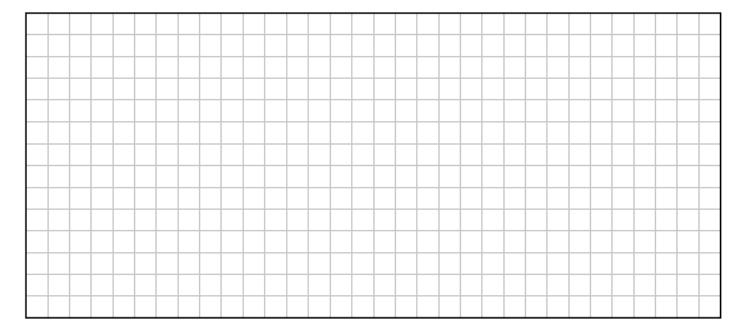
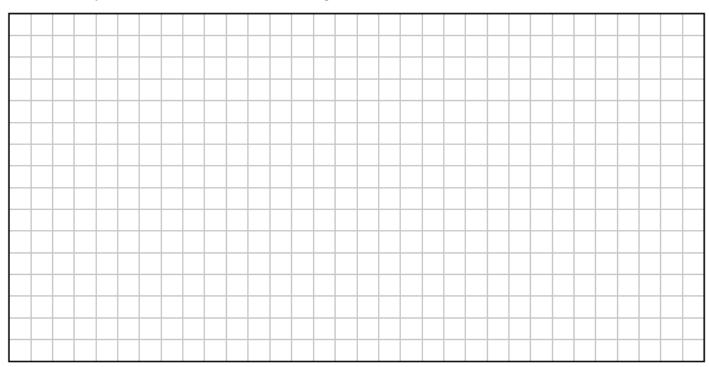

▶ 2023 LCHL Paper 1 - Question 7

Fiona is driving on a motorway. She passes a point **A** on the motorway. Her speed is given by:

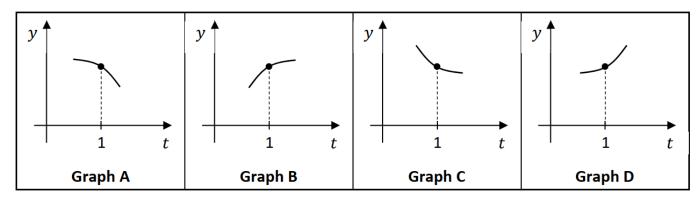

$$v(t) = \frac{2}{3}t^3 - 6t^2 + 13t + 109$$

where v is her speed in km/hour t minutes after passing the point \mathbf{A} , for $0 \le t \le 5$ and $t \in \mathbb{R}$.


(a) Work out Fiona's speed when she passes the point A.


(b) Work out Fiona's acceleration (that is, the rate at which her speed is increasing) 5 minutes after she passes the point **A**. Give your answer in km/hour per minute.

(c) Find the time (value of *t*) at which Fiona reaches her maximum speed, during the first 4 minutes after she passes the point **A**. Give your answer correct to 2 decimal places.


(d) Use integration to work out Fiona's average speed over the 5 minutes after she passes the point **A**. Give your answer correct to 2 decimal places.

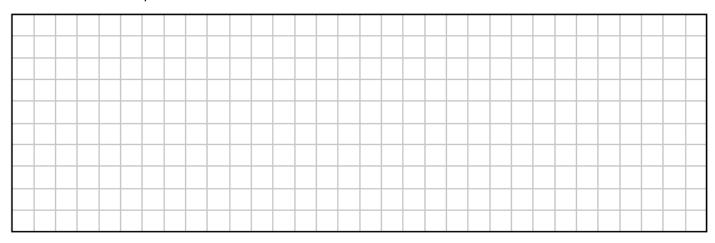
(e) Taking v'(t) to be the derivative of v, and v''(t) to be the second derivative of v:

$$v'(1) > 0$$
 and $v''(1) < 0$.

Four graphs, A, B, C, and D, are shown below.

Close to where t=1, the graph of y=v(t) must look like one of the four graphs given above. Write down which graph this is. Justify your answer, using both v'(1) and v''(1).

Answer (A, B, C, or D):										
Using $v'(1) > 0$:										
Using $v''(1) < 0$:						-		+		
							Ш	_		
	This question continues on the next page.									


There is an $Average\ Speed\ Zone$ on the motorway, starting at the point A and ending at point B.

The distance from **A** to **B** along the motorway is 10 km.

Cameras record the time taken for each car to travel from the point **A** to the point **B**.

Each car's average speed from **A** to **B** is then calculated.

(f) Work out the **minimum** time, in minutes, that a driver could get from **A** to **B**, while not driving above 100 km/hour.

(g) Rohan drives from A to B.

He passes the point **A** driving at a constant speed of 120 km/hour. After 2 minutes driving at this speed, he starts to decelerate (reduce his speed) at a constant rate, until he reaches the point **B**. Overall, his average speed in driving from **A** to **B** is 100 km/hour.

Work out Rohan's deceleration. Give your answer in km/hour per minute.

