

Maths Points

PAPER 1: FORMAL PROOFS AND CONSTRUCTIONS

LEAVING CERT HigHER LEVEL

This PowerPoint is a Preview only. All solutions available as full member.

Paper 1 Formal Proofs and Constructions

Proofs

Proof By Contradiction $-\sqrt{2}$ is not Rational
Sum of Geometric Series by Induction
Sum to Infinity of Geometric Series (Limits)
Derive Amortisation Formula

De Moivre's Theorem by Induction

Constructions

Construction of $\sqrt{2}$
Construction of $\sqrt{3}$

Learn Also

De Moivre to Prove Trigonometric Identity I
De Moivre to Prove Trigonometric Identity II
Differentiate by 1 st Principles

Maths Points
Junior and Leaving Cert

Prove, by induction, the formula for the sum of the first n terms of a geometric series. That is, prove that, for $r \neq 1$:

$$
a+a r+a r^{2}+\cdots+a r^{n-1}=\frac{a\left(1-r^{n}\right)}{1-r}
$$

Begin with the assumption

Step 1: Show true for $n=1$
$a=\frac{a\left(1-r^{1}\right)}{1-r}$
$a=a$
which is true

Step 2: Assume true for $n=k$

$$
a+a r+a r^{2}+\cdots+a r^{k-1}=\frac{a\left(1-r^{k}\right)}{1-r}
$$

Step 3: Prove true for $n=k+1$
$a+a r+a r^{2}+\cdots+a r^{k-1}+a r^{k}=\frac{a\left(1-r^{k+1}\right)}{1-r}$
$\left.1-r^{k}\right)$
$1-r$
$a+a r+a r^{2}+\cdots+a r^{k-1}+a r^{k}=\frac{a\left(1-r^{k}\right)}{1-r}+a r^{k}$

$$
\begin{aligned}
& =\frac{a\left(1-r^{k}\right)+a r^{k}(1-r)}{1-r} \\
& =\frac{a\left(1-r^{k}+r^{k}(1-r)\right)}{1-r}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{a\left(1-r^{k}+r^{k}-r^{k+1}\right)}{1-r} \\
& =\frac{a\left(1-r^{k+1}\right)}{1-r}
\end{aligned}
$$

The proposition is true for $n=1$. If the proposition is true for $n=k$, then it will be true for $n=k+1$. Therefore, by induction it is true for all $n \in N$.

Steps

1. Let the line segment $A B$ be of length 1 unit.
2. Construct a circle with centre A and radius length $|A B|$.
3. Construct a circle with centre B and radius length $[\mathrm{AB}]$.
4. Mark the intersection of the two circles as C and D.
5. Draw the line segment [CD].

$$
|C D|=\sqrt{3}
$$

