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Sum of Geometric Series by Induction

Prove, by induction, the formula for the sum of the first 𝑛 terms of a geometric series. That is, prove that, for 𝑟 ≠ 1:

𝑎 + 𝑎𝑟 + 𝑎𝑟2 + ⋯ + 𝑎𝑟𝑛−1 =
𝑎 1 − 𝑟𝑛

1 − 𝑟

The proposition is true for 𝑛 = 1. If the proposition 
is true for 𝑛 = 𝑘, then it will be true for 𝑛 = 𝑘 + 1. 
Therefore, by induction it is true for all 𝑛 ∈ 𝑁.

Step 1: Show true for 𝑛 = 1

Step 2: Assume true for 𝑛 = 𝑘

Step 3: Prove true for 𝑛 = 𝑘 + 1

Proof

𝑎 =
𝑎 1 − 𝑟1

1 − 𝑟

𝑎 = 𝑎

𝑎 + 𝑎𝑟 + 𝑎𝑟2 + ⋯ + 𝑎𝑟𝑘−1 =
𝑎 1 − 𝑟𝑘

1 − 𝑟

𝑎 + 𝑎𝑟 + 𝑎𝑟2 + ⋯ + 𝑎𝑟𝑘−1 + 𝑎𝑟𝑘 =
𝑎 1 − 𝑟𝑘+1

1 − 𝑟

𝑎 + 𝑎𝑟 + 𝑎𝑟2 + ⋯ + 𝑎𝑟𝑘−1 =
𝑎 1 − 𝑟𝑘

1 − 𝑟

𝑎 + 𝑎𝑟 + 𝑎𝑟2 + ⋯ + 𝑎𝑟𝑘−1 =
𝑎 1 − 𝑟𝑘

1 − 𝑟

Begin with the assumption

=
𝑎 1 − 𝑟𝑘 + 𝑎𝑟𝑘 1 − 𝑟

1 − 𝑟

=
𝑎 1 − 𝑟𝑘 +𝑟𝑘 1 − 𝑟

1 − 𝑟

=
𝑎 1 − 𝑟𝑘 +𝑟𝑘 −𝑟𝑘+1

1 − 𝑟

=
𝑎 1 − 𝑟𝑘+1

1 − 𝑟

Add 𝑎𝑟𝑘 to both sides 
of the assumption 
and then work with 
RHS only.

+ 𝑎𝑟𝑘 + 𝑎𝑟𝑘

which is true

𝑟𝑘 . 𝑟 = 𝑟𝑘+1
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𝐶

Construction of 𝟑

𝐴 𝐵

𝐷
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Steps

1. Let the line segment AB be of 
length 1 unit.

2. Construct a circle with centre A 
and radius length |AB|.

3. Construct a circle with centre B 
and radius length [AB].

4. Mark the intersection of the two 
circles as C and D.

5. Draw the line segment [CD].

𝐶𝐷 = 3
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